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Current and magnetic field distributions in curved superconducting tapes are investigated theoretically. The
geometry of superconducting tapes considered here is a section of a cylindrical shell in which the length of tape
lies parallel to the long axis of the cylinder. Analytical investigation based on the critical state model demon-
strates that the current and field distributions and the ac losses in curved superconducting tapes carrying
transport currents are equivalent to those in an infinite array of coplanar superconducting tapes. Bending a
superconducting tape reduces the magnetic field perpendicular to the tape, resulting in a reduction of ac losses.
Simple analytical formulas are presented for the hysteretic ac losses in curved superconducting tapes carrying
ac transport currents.
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I. INTRODUCTION

Electromagnetic responses �e.g., current and magnetic
field distributions and ac losses� of flat superconducting
tapes �see Fig. 1�a�� have been investigated theoretically.1–4

In a power transmission cable, however, parallel supercon-
ducting tapes wrap around a cylindrical former,5 and the
tapes can be curved conforming to the shape of the cylinder,6

as shown in Fig. 1�b�. Although such bending affects elec-
tromagnetic responses, curved superconducting tapes have
not yet been investigated analytically.

In the present paper we investigate theoretically the elec-
tromagnetic response of current-carrying superconducting
tapes in the shape of a section of a cylindrical shell. Analyti-
cal expressions are presented for current and field distribu-
tions and for ac losses. These theoretical results clarify the
physical mechanisms of the ac losses in curved supercon-
ducting tapes and are useful for design of the configuration
of power cables. The paper is organized as follows. A single
isolated curved tape is investigated in Sec. II, and the case of
a number of parallel curved tapes periodically arranged
around a cylinder is investigated in Sec. III. The theoretical
results are summarized in Sec. IV.

II. SINGLE CURVED TAPE

A. Geometry of a curved tape

In this section we consider an isolated curved supercon-
ducting tape, as shown in Fig. 1�b�. The superconducting
tape is curved in the xy plane and is straight and of infinite
extent along the z axis. The width of the curved tape is 2w
and the thickness is d. We consider the thin-tape limit,
d /2w→0. The cross section of the curved tape in the xy
plane corresponds to a circular arc of radius R and central
angle 4�1=2w /R, as shown in Fig. 2. The flat tape corre-
sponds to the limit R→� at fixed width 2w �i.e., �1→0�.

The superconducting tape carries a transport current Iz
along the z axis. First, we consider the response to a dc
transport current Iz= I0 which is monotonically increased
from Iz=0 �Sec. II B�. Next, we consider the ac loss in a
superconducting tape carrying an ac transport current Iz

= Ip1 cos �t �Sec. II C�. The electromagnetic response of a
curved superconducting tape is analyzed on the basis of the
critical state model with constant critical current density jc,
as in the Bean model.7 The critical current of a curved tape is
Ic1=2jcwd.

B. Field distributions for a curved tape

The complex-field approach is a very useful and powerful
method for analyzing two-dimensional magnetic fields,8,9

where the complex field is defined as a function of �=x+ iy
by H���=Hy�x ,y�+ iHx�x ,y�. We use the conformal mapping
from �=x+ iy to �=u+ iv,

� = iR�1 − ei�/R� . �1�

When v=0, u corresponds to the arc length from �=0 to �
= iR�1−eiu/R�=R sin�u /R�+ iR�1−cos�u /R�� on a curved
tape. By using the conformal mapping of Eq. �1�, a curved
tape in the � plane �as shown in Fig. 2� is mapped onto an
infinite array of coplanar tapes in the � plane �as shown in
Fig. 3�. In other words, the arc corresponding to the cross
section of a curved tape is simply expressed as v=0 and
−w+2�kR�u�w+2�kR with an arbitrary integer k.

The relationship between the complex field H��� in the �

plane and the complex field H̃���=Hv�u ,v�+ iHu�u ,v� in the
� plane is

H̃��� =
d�

d�
H��� = ei�/RH��� . �2�

For v→0 �i.e., ��− iR�→R�, Eq. �2� reduces to Hv+ iHu
=eiu/R�Hy + iHx�, which means that Hv and Hu correspond to
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FIG. 1. �Color online� Schematic configurations of �a� a flat tape
and �b� a curved tape.
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the components of the magnetic field perpendicular and par-
allel to a curved tape, respectively.

The Biot-Savart law for complex field H��� and sheet
current Kz�u� in a curved tape is given by

H��� =
1

2�
�

−w

+w

du�
Kz�u��

� − iR�1 − eiu�/R�
. �3�

Substituting Eqs. �1� and �3� into Eq. �2� yields

H̃��� =
1

2�R
�

−w

+w

du�
iKz�u��

1 − ei�u�−��/R
�4�

=
1

4�R
�

−w

+w

du�Kz�u���i + cot�� − u�

2R
	


= i
I0

4�R
+

1

2�
�

−w

+w

du�Kz�u�� �
k=−�

+�
1

� − u� − 2�kR
,

�5�

where I0=�−w
+wKz�u�du is the transport current. Equation �5�

shows that H̃��� corresponds to the complex field for an
infinite array of coplanar superconducting tapes10–12 exposed
to transport currents I0 and a parallel magnetic field I0 /4�R.
The effective parallel field I0 /4�R is smaller than the full
penetration field jcd /2 because I0� Ic1=2jcwd and R�w /�.
Note that the effective parallel field smaller than jcd /2 does
not affect seriously the electromagnetic response of super-

conducting tapes in the limit d /2w→0. We, therefore, can
conclude that the electromagnetic response of a curved su-
perconducting tape carrying a transport current �as shown in
Fig. 2� is equivalent to that of an infinite array of coplanar
tapes �as shown in Fig. 3�.

The current and magnetic field distributions in an infinite
array of coplanar superconducting tapes have already been
derived in Refs. 11 and 12. Therefore, the complex field for

a curved superconducting tape H̃��� is given by

H̃��� =
jcd

�
arctanh� tan2�w/2R� − tan2�a0/2R�

tan2��/2R� − tan2�a0/2R�2
 + i
I0

4�R
,

�6�

where the parallel field component iI0 /4�R is added for con-
sistency with Eq. �5�, and the flux front parameter a0 is given
by11,12

a0 =
w

�1
arccos� cos �1

cos��1I0/Ic1�
 . �7�

Figure 4 shows plots of a0 vs I0 based on Eq. �7�. It can be
seen that the penetration of magnetic flux into a supercon-
ducting tape is delayed by its curvature.

Figure 5 shows the magnetic field lines �i.e., the contour
lines of the real part of the complex potential G���
=�H���d�=�H̃���d� from Eq. �6�� around �a� a flat super-
conducting tape and �b�–�d� a curved superconducting tape
carrying a transport current of I0 / Ic1=0.8.

Now we consider H̃��� at the upper �i.e., inner� surface
�=u+ i	 and at the lower �i.e., outer� surface �=u− i	, where
	→+0 is a positive infinitesimal. The real part of Eq. �5�
�i.e., the perpendicular field Hv� at �=u
 i	 reduces to

Hv�u,0� = Re H̃�u 
 i	� =
1

4�R
�

−w

+w

du�Kz�u��cot�u − u�

2R
	 .

�8�

The imaginary part of Eq. �5� �i.e., the parallel field Hu� at
�=u
 i	 and �u��w is

4θ1 = 2w/R

2w

R

x

y

FIG. 2. �Color online� Cross section of a tape curved in the �
=x+ iy plane. This is equivalent to a circular arc of radius R �i.e.,
��− iR�=R� with central angle 4�1=2w /R �i.e., �arg��− iR�+� /2�
�2�1�, where 0��1=w /2R�� /2. The limit of �1→0 corresponds
to a flat tape.

2w

2πR

u

v

FIG. 3. �Color online� Cross section of an infinite array of co-
planar tapes in the �=u+ iv plane. Coplanar tapes of width 2w are
periodically arranged with a periodicity of 2�R, and the cross sec-
tion of the tapes is expressed as v=0 and �u−2�kR��w �k
=0, 
1, 
2, . . . , 
��.
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FIG. 4. �Color online� The flux front parameter, a0, as a function
of the transport current, I0. The flux front for a flat superconducting
tape with �1=0 �dashed line� and for curved superconducting tapes
with �1=0.25�, 0.35�, and 0.45� �solid lines� are shown.
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Hu�u, 
 	� = Im H̃�u 
 i	�

=
I0

4�R
�

1

2
�

−w

+w

du�Kz�u�� �
k=−�

+�

��u − u� − 2�kR�

=
I0

4�R
�

1

2
Kz�u� , �9�

where ��u� is the delta function. Because of the curvature of
the tape, the parallel field Hu is asymmetric, that is, Hu at the
upper �i.e., inner� surface is smaller than that at the lower
�i.e., outer� surface. In the limiting case of �1→� /2, a
curved tape becomes a hollow cylinder with a uniform sheet
current Kz= I0 /2w= I0 /2�R. Then, Eq. �9� yields Hu�u ,+	�
=0 and Hu�u ,−	�= I0 /2�R.

The perpendicular magnetic field component, Hv�u ,0�
=Re H̃�u
 i	�, and the sheet current, Kz�u�=Im�H̃�u− i	�
−H̃�u+ i	��, derived from Eq. �6�, are

Hv�u,0�
jcd/�

= �0 for �u� � a0

sgn�u�arccoth �u� for a0 � �u� � w

sgn�u�arctanh �u� for �u� � w ,
�

�10�

Kz�u�
jcd

= ��2/��arctan �u� for �u� � a0

1 for a0 � �u� � w ,
� �11�

where the function �u� is given by

�u� = tan2�w/2R� − tan2�a0/2R�
�tan2�u/2R� − tan2�a0/2R�2�

. �12�

For �1→0, the respective Eqs. �6�, �7�, and �12� reduce to

H̃��� →
jcd

�
arctanh�w2 − a0

2

�2 − a0
2	 , �13�

a0 → w1 − �I0/Ic1�2, �14�

�u� → w2 − a0
2

�u2 − a0
2�

. �15�

Equations �13�–�15� correspond to the expressions for a flat
superconducting tape.1,3,4

Figure 6 shows plots of the sheet current Kz�u� from Eq.
�11� and the perpendicular field Hv�u ,0� from Eq. �10�. The
sheet current Kz becomes more uniform as �1 approaches
� /2, and the perpendicular field Hv for a curved tape is
smaller than that for a flat tape.

C. ac loss in a single curved tape

Here we consider the response of a curved superconduct-
ing tape to an ac transport current Iz= Ip1 cos �t. Integrating
Faraday’s law, the electric field Ez�u� at �= iR�1−eiu/R� in a
curved tape is obtained from the perpendicular field Hv�u ,0�
as

Ez�u� = −
d

dt
�

0

u

du��0Hv�u�,0� . �16�

The ac loss Q1 in a curved superconducting tape per unit
length is, thus, given by13
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FIG. 5. �Color online� Magnetic field lines around a superconducting tape with I0 / Ic1=0.8 for �1=w /2R: �a� �1=0, �b� �1=0.15�, �c�
�1=0.3�, and �d� �1=0.45�. Thick lines correspond to cross sections of the superconducting tapes.
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FIG. 6. �Color online� Distributions of �a� the sheet current
Kz�u� and �b� the perpendicular field Hv�u ,0� for I0 / Ic1=0.8 in a flat
superconducting tape with �1=0 �dashed line� and those in a curved
superconducting tape with �1=0.25�, 0.35�, and 0.45� �solid
lines�.
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Q1 = 8�0jcd�
a0

w

du�w − u�Hv�u,0� , �17�

where Hv�u ,0� is the perpendicular field when the transport
current is at the maximum �i.e., Iz=+Ip1� in the ac cycle.
Substituting Eqs. �7�, �10�, and �12� into Eq. �17�, with I0
replaced by Ip1, we have

Q1 =
�0Ic1

2

�
F2�

0

1

ds�1 − 2s�ln�1 −
tan2�sF�1�

tan2 �1

 , �18�

where F= Ip1 / Ic1 and �1=w /2R. This expression for the ac
loss in a single curved superconducting tape is equivalent to
that for an infinite array of coplanar tapes.11,14

When the logarithmic function in Eq. �18� is expanded as
ln�1−�1��−�1, where �1=cot2 �1 tan2�sF�1��1, we obtain

Q1 �
�0Ic1

2

�

cot2 �1

�1
2 �2 ln�cos�F�1�� + F�1 tan�F�1�� ,

�19�

which is accurate for small F and large �1. When 0�F
�0.8 and 0.4���1�0.5�, the relative error in Eq. �19�
compared to Eq. �18� is less than 10%.

For �1→0, Eq. �18� reduces to the ac loss in a flat super-
conducting tape as given by Norris.1 For small currents, F
= Ip1 / Ic1�1, Eqs. �18� and �19� reduce to11,14

Q1 �
�0Ic1

2

6�
F4�1

2 cot2 �1. �20�

The distance between the edges of a curved tape, 2g
=2R sin�w /R��2�R−2w, becomes small when �1→� /2.
For a small gap, g /w�1−F, Eqs. �18� and �19� reduce to

Q1 �
�0Ic1

2

�
� g

w
	2�2 ln�cos��F

2
	
 +

�F

2
tan��F

2
	� ,

�21�

which is equivalent to the ac loss in two semi-infinite super-
conducting films with a gap.15

Note that Eqs. �16�–�21� are valid when 2g is much larger
than d because the contribution of the penetration of the
parallel field Hu is neglected in those expressions. On the
other hand, when 2g�d, the contribution of the parallel field
Hu cannot be neglected when evaluating the ac losses. In this
case the contributions of both the perpendicular field Hv and
the parallel field Hu �i.e., “edge losses” and “top and bottom
losses”16� should be included.

For zero gap 2g=0 �i.e., �1=� /2�, a curved tape becomes
a hollow cylinder, in which the perpendicular field is zero
�i.e., Hv=0� and the ac loss is determined by the penetration
of the parallel field Hu. The corresponding ac loss, based on
the monoblock model,17 is given by

Qm =
�0Ic1

2

�h2 ��1 −
hF

2
	hF + �1 − hF�ln�1 − hF�
 , �22�

where h=1− �1−d /R�2. When the tape thickness d is much
smaller than the radius R, we have h�2d /R�1 and Eq. �22�
reduces to18

Qm �
�0Ic1

2

3�

d

R
F3. �23�

Figure 7 shows the ac loss Q1 in a curved superconduct-
ing tape carrying an ac transport current of amplitude Ip1.
The dashed line shows Q1 for a flat tape ��1=0� and the solid
lines show Q1 for curved tapes with �1=0.15�, 0.25�,
0.35�, and 0.45� obtained from Eq. �18�. The dotted line
shows Q1=Qm of the monoblock model for �1=� /2 and is
obtained from Eq. �22� with d /2w=10−4 �e.g., d=1 �m and
2w=10 mm�.

III. NUMBER OF CURVED TAPES AROUND A CYLINDER

A. Geometry of curved tapes around a cylinder

In this section we consider n curved superconducting
tapes of width 2w arranged on a cylinder of radius R, where
R�nw /�, as shown in Fig. 8. As suggested by Amemiya et
al.,6 the ac loss in such a round cable is expected to be
smaller than that of an angular cable with flat tapes as shown
in Fig. 1 in Ref. 14.

B. Field distributions for multiple tapes arranged around a
cylinder

By using the conformal mapping in Eq. �1�, the tapes
which are curved in the � plane as shown in Fig. 8 are
mapped onto an infinite array of coplanar tapes in the �
plane �as shown in Fig. 3�, where the periodicity of the co-
planar array is 2�R /n rather than 2�R.

The Biot-Savart law for the sheet current Kz�u� and the
complex field H��� is given by

H��� =
1

2�
�

−w

+w

du��
k=1

n
Kz�u��

� − iR�1 − ei�u�/R+2�k/n��

=
1

2�
�

−w

+w

du�
n�� − iR�n−1Kz�u��

�� − iR�n − �− iReiu�/R�n
. �24�
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FIG. 7. �Color online� The ac loss Q1 in a curved superconduct-
ing tape per unit length as a function of the normalized current
amplitude F= Ip1 / Ic1. Q1 is shown for a flat tape with �1=0 �dashed
line�, curved tapes with �1=0.15�, 0.25�, 0.35�, and 0.45� �solid
lines�, and a monoblock model with �1=� /2 �dotted line�.
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Substitution of Eqs. �1� and �24� into Eq. �2� yields

H̃��� =
n

2�R
�

−w

+w

du�
iKz�u��

1 − ein�u�−��/R
, �25�

which is obtained from Eq. �4� by making the replacement
R→R /n �i.e., �1→�n=nw /2R�. The resulting complex field

H̃���, the flux front parameter a0, and the function for field
distributions �u� are, therefore, simply obtained by replac-
ing R with R /n in Eqs. �6�, �7�, and �12�, respectively.

C. ac loss in multiple tapes arranged around a cylinder

Here we consider the case where the superconducting
tapes carry a total ac transport current Iz= Ip cos �t. The ac
loss in each tape, Qn /n, is also simply obtained from Q1 in
Eq. �18� by making the replacement R→R /n, and the total
ac loss in curved tapes Qn is given by

Qn =
�0Ic

2

�n
F2�

0

1

ds�1 − 2s�ln�1 −
tan2�sF�n�

tan2 �n

 , �26�

where �n=nw /2R, F= Ip / Ic= Ip1 / Ic1, Ip=nIp1 is the amplitude
of total current, and Ic=nIc1=2njcwd is the total critical cur-
rent.

When the logarithmic function in Eq. �26� is expanded as
ln�1−�n��−�n, where �n=cot2 �n tan2�sF�n��1, we obtain

Qn �
�0Ic

2

�n

cot2 �n

�n
2 �2 ln�cos�F�n�� + F�n tan�F�n�� ,

�27�

which is accurate for small F and large �n.
For �n�1, both the bending effect and the interaction

among superconducting tapes can be neglected, and Eq. �26�
reduces to the expression given by Norris,1

Qn �
�0Ic

2

�n
��1 + F�ln�1 + F� + �1 − F�ln�1 + F� − F2� .

�28�

For small currents, F= Ip / Ic�1, Eqs. �26� and �27� reduce
to11,14

Qn �
�0Ic

2

6�n
F4�n

2 cot2 �n. �29�

The gap between the edges of the tapes is given by 2g
=2R sin�� /n−w /R� and can be approximated as 2g
�2�R /n−2w for 1−nw /�R�1. For small gaps, g /w�1
−F, Eqs. �26� and �27� reduce to

Qn �
�0Ic

2

�n
� g

w
	2�2 ln�cos��F

2
	
 +

�F

2
tan��F

2
	� ,

�30�

which is proportional to �Ic
2 /n��g /w�2=n�2g�2jc

2d2 when F
= Ip / Ic is fixed. Furthermore, when F= Ip / Ic, jcd, 2g, and Ic
�2nw are all fixed, Eq. �30� shows that Qn�n�1 /2w, which
suggests that the small number of wide tapes is an advanta-
geous design for reducing total ac loss in curved supercon-
ducting tapes arranged around a cylinder. For zero gap 2g
=0 �i.e., �n=� /2�, Eqs. �26�–�30� are not valid, and the ac
loss corresponds to the monoblock model result given by Eq.
�22�.

IV. SUMMARY

We investigated theoretically the field distributions and ac
losses in curved superconducting tapes with the shape of a
section of a cylindrical shell. The current and magnetic field
distributions in curved superconducting tapes �as shown in
Figs. 2 and 8� carrying transport currents are equivalent to
those of an infinite array of coplanar superconducting tapes
�as shown in Fig. 3�.

The current and field distributions for a single curved su-
perconducting tape �as shown in Fig. 2� carrying a transport
current are given by Eqs. �6�–�12�. The ac loss Q1 in a single
curved superconducting tape carrying an ac transport current
is given by Eq. �18� with an approximate expression given
by Eq. �19�. Bending superconducting tapes reduces both the
perpendicular magnetic field and the ac loss.

The expressions for the current and field distributions due
to a number of curved superconducting tapes arranged regu-
larly around a cylinder �as shown in Fig. 8� are obtained
simply by making the replacement R→R /n in the corre-
sponding expressions for a single curved tape. The total ac
loss Qn in a number of curved superconducting tapes con-
forming to a cylinder and carrying ac transport currents is
given by Eq. �26� with an approximate expression given by
Eq. �27�. Equation �30� for the small gap limit suggests that
a small number of wide tapes is an advantageous design for
reducing ac losses in a round cable surrounded by curved
superconducting tapes.

2w

R

x

y

FIG. 8. �Color online� Superconducting tapes of width 2w are
periodically arranged around a cylinder of radius R �where R
�nw /��. The important parameter characterizing the n tapes is
�n=nw /2R, where 0��n�� /2. This figure shows the cross section
for n=8 tapes.
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